
International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Recitation of Load Balancing Algorithms In Grid
Computing Environment Using Policies And

Strategies - An Approach
M.Kamarunisha, S.Ranichandra, T.K.P.Rajagopal

Abstract -Grid computing is a term referring to the
combination of computer resources from multiple
administrative domains to reach common goal. What
distinguishes grid computing from conventional high
performance computing systems such as cluster computing is
that grids tend to be more loosely coupled, heterogeneous, and
geographically dispersed. Grid computing is the next
generation IT infrastructure that promises to transform the
way organizations and individuals compute, communicate and
collaborate. The goal of Grid computing is to create the illusion
of a simple but large and powerful self-managing virtual
computer out of a large collection of connected heterogeneous
systems sharing various combinations of resources. Grid
Resource Management is defined as the process of identifying
requirements, matching resources to applications, allocating
those resources, and scheduling and monitoring Grid resources
over time in order to run Grid applications as efficiently as
possible. Focus of this paper is on analyzing Load balancing
requirements in a Grid environment and proposing a
centralized and sender initiated load balancing algorithm. A
load balancing algorithm has been implemented and tested in a
simulated Grid environment.

I. INTRODUCTION
The rapid development in computing resources has

enhanced the performance of computers and reduced their
costs. This availability of low cost powerful computers
coupled with the popularity of the Internet and high-speed
networks has led the computing environment to be mapped
from distributed to Grid environments [1]. In fact, recent
researches on computing architectures are allowed the
emergence of a new computing paradigm known as Grid
computing. Grid is a type of distributed system which
supports the sharing and coordinated use of geographically
distributed and multiowner resources, independently from
their physical type and location, in dynamic virtual
organizations that share the same goal of solving large-scale
applications.

In Grid computing, individual users can access
computers and data, transparently, without having to
consider location, operating system, account administration,

and other details. In Grid computing, the details are
abstracted, and the resources are virtualized. Grid
Computing has emerged as a new and important field and
can be visualized as an enhanced form of Distributed
Computing [2]. Sharing in a Grid is not just a simple sharing
of files but of hardware, software, data, and other resources
[2]. Thus a complex yet secure sharing is at the heart of the
Grid.

II. WHY GRID TECHNOLOGIES?
Computers have been proven to be very efficient to

solve complex scientific problems. They are used to model
and simulate problems of a wide range of domains, for
instance medicine, engineering, security control and many
more. Although their computational capacity has shown
greater capabilities than the human brain to solve such
problems, computers are still used less than they could be.
One of the most important reasons to this lack of use of
computational power is that, despite the relatively powerful
computing environment one can have, it is not adapted to
such complicated computational purposes. The following are
given the reasons for why we need grid computing.

III. LOAD BALANCING IN GRID ENVIRONMENT
A key characteristic of Grids is that resources (e.g.,

CPU cycles and network capacities) are shared among
numerous applications, and therefore, the amount of
resources available to any given application highly fluctuates
over time. In this scenario load balancing plays key role.
Load balancing is a technique to enhance resources, utilizing
parallelism, exploiting throughput improvisation, and to cut
response time through an appropriate distribution of the
application. To minimize the decision time is one of the
objectives for load balancing which has yet not been
achieved. As illustrated in Figure1 load balancing feature
can prove invaluable for handling occasional peak loads of
activity in parts of a larger organization.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Figure 1: Job Migration

A. Load Balancing Algorithms
Algorithms can be classified into two categories: static

or dynamic.
(i) Static Load Balancing Algorithm

Figure.2: Static Load Balancing
Static load balancing algorithms allocate the tasks of a
parallel program to workstations based on either the load at
the time nodes are allocated to some task, or based on an
average load of our workstation cluster. The decisions
related to load balance are made at compile time when
resource requirements are estimated.
(ii) Dynamic Load Balancing Algorithm

Dynamic load balancing algorithms make changes to the
distribution of work among workstations at run-time; they
use current or recent load information when making
distribution decisions. Multicomputers with dynamic load
balancing allocate/reallocate resources at runtime based on
no a priori task information, which may determine when and
whose tasks can be migrated. As a result, dynamic load
balancing algorithms can provide a significant improvement
in Performance over static algorithms.

Figure.3: Static Load Balancing

IV. LOAD BALANCING STRATEGIES
There are three major parameters which usually

define the strategy a specific load balancing algorithm will
employ. These three parameters answer three important
questions:
• who makes the load balancing decision
• what information is used to make the load balancing
decision, and
• Where the load balancing decision is made.
A. Sender-Initiated vs. Receiver-Initiated Strategies
The question of who makes the load balancing decision is
answered based on whether a sender-initiated or receiver-
initiated policy is employed. In sender-initiated policies,
congested nodes attempt to move work to lightly-loaded
nodes. In receiver-initiated policies, lightly-loaded nodes
look for heavily-loaded nodes from which work may be
received. The sender-initiated policy performing better than
the receiver-initiated policy at low to moderate system loads.
Reasons are that at these loads, the probability of finding a
lightly-loaded node is higher than that of finding a heavily-
loaded node. Similarly, at high system loads, the receiver
initiated policy performs better since it is much easier to find
a heavily-loaded node.
B. Global vs. Local Strategies

Global or local policies answer the question of what
information will be used to make a load balancing decision
in global policies, the load balancer uses the performance
profiles of all available workstations. In local policies
workstations are partitioned into different groups. The
benefit in a local scheme is that performance profile
information is only exchanged within the group. The choice
of a global or local policy depends on the behavior an
application will exhibit. For global schemes, balanced load
convergence is faster compared to a local scheme since all
workstations are considered at the same time.
C.Centralized vs. De-centralized Strategies

A load balancer is categorized as either centralized
or distributed, both of which define where load balancing
decisions are made [44-46]. In a centralized scheme, the load

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

balancer is located on one master workstation node and all
decisions are made there. Basic features of centralized
approach are:
• a master node holds the collection of tasks to be performed
• tasks are sent to the execution node
• when a execution process completes one task, it requests
another task from the master node

V. LOAD BALANCING POLICIES
Load balancing algorithms can be defined by their

implementation of the following policies:
• Information policy: specifies what workload information to
be collected, when it is to be collected and from where.

. Triggering policy: determines the appropriate period to
start a load balancing operation.
• Resource type policy: classifies a resource as server or
receiver of tasks according to its availability status.
• Location policy: uses the results of the resource type policy
to find a suitable partner for a server or receiver.
• Selection policy: defines the tasks that should be migrated
from overloaded resources (source) to most idle resources
(receiver).

The main objective of load balancing methods is to
speed up the execution of applications on resources whose
workload varies at run time in unpredictable way. Hence, it
is significant to define metrics to measure the resource
workload. The success of a load balancing algorithm
depends from stability of the number of messages (small
overhead), support environment, low cost update of the
workload, and short mean response time which is a
significant measurement for a user. It is also essential to
measure the communication cost induced by a load
balancing operation.

VI. PROBLEM FORMULATION
In grid environments, the shared resources are

dynamic in nature, which in turn affects application
performance. Workload and resource management are two
essential functions provided at the service level of the Grid
software infrastructure. To improve the global throughput of
these environments, effective and efficient load balancing
algorithms are fundamentally important. The focus of our
study is to consider factors which can be used as
characteristics for decision making to initiate Load
Balancing. Load Balancing is one of the most important
factors which can affect the performance of the grid
application. This work analyzes the existing Load Balancing
modules and tries to find out performance bottlenecks in it.
All Load Balancing algorithms implement five policies [3].

The efficient implementation of these policies
decides overall performance of Load Balancing algorithm.

The main objective of this paper is to propose an efficient
Load Balancing Algorithm for Grid environment. Main
difference between existing Load Balancing algorithm and
proposed Load Balancing is in implementation of three
policies: Information Policy, Triggering Policy and Selection
Policy. For implementation of Information Policy all
existing Load Balancing algorithm use periodic approach,
which is time consuming.

The proposed approach uses activity based
approach for implementing Information policy. For
Triggering Load Balancing proposed algorithm uses two
parameters which decide Load Index. On the basis of Load
Index Load Balancer decide to activate Load Balancing
process. For implementation of Selection Policy Proposed
algorithm uses Job length as a parameter, which can be used
more reliably to make decision about selection of job for
migration from heavily loaded node to lightly loaded node.
Following table discusses the main differences between the
proposed algorithm and Condor Load Balancing algorithm.

Table 1: Comparison between Condor LB Module and
Proposed LB Module

VII. PROPOSED LOAD BALANCING ALGORITHM
Load balancing is defined as the allocation of the

work of a single application to processors at run-time so that
the execution time of the application is minimized. This
chapter is going to discuss the design of proposed Load
Balancing algorithm.

A. Background
While many different load balancing algorithms have

been proposed, there are four basic steps that nearly all
algorithms have in common:

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

1. Monitoring workstation performance (load
monitoring)
2. Exchanging this information between workstations
(synchronization)
3. Calculating new distributions and making the work
movement decision (rebalancing criteria)
4. Actual data movement (job migration)

Efficient Load Balancing algorithm makes Grid
Middleware efficient and which will ultimately leads to fast
execution of application in Grid environment. In this work,
an attempt has been made to formulate a decentralized,
sender-initiated load balancing algorithm for Grid
environments which is based on different parameters. One of
the important characteristics of this algorithm is to estimate
system parameters such as queue length and CPU utilization
of each participating nodes and to perform job migration if
required.

B. Design of Load Balancing Algorithm
Load balancing should take place when the load

situation has changed. There are some particular activities
which change the load configuration in Grid environment.
The activities can be categorized as following:
• Arrival of any new job and queuing of that job to any
particular node.
• Completion of execution of any job.
• Arrival of any new resource
• Withdrawal of any existing resource.

Whenever any of these four activities happens
activity is communicated to master node hen load
information is collected and load balancing condition is
checked. If load balancing condition is fulfilled then actual
load balancing activity is performed. Following is the
proposed algorithm for Load Balancing:

Loop
wait for load change
// depends on happening of any of four defined activities
if (activity_happens ())
If (LoadBalancing_start ())
while HeavilyLoaded_list is not empty
Determine tasks which can be migratable using criteria
of CPU consumed by each job which has least CPU
consumption selected for being migrated.
Selected job = j;
If LightlyLoaded_list is empty
PendingJob_list = PendingJob_list + j;
Else
Migrate (LightlyLoaded_list [first],
HeavilyLoaded_list[n], j);
// update the database

End while
End Loop

Following are some functions used in the above algorithm:
Activity_happens (): this function return Boolean value. If
any of above defined activity occurs it returns true otherwise
it returns false.
LoadBalancing_start (): this function also return Boolean
value. If on the basis of given parameters (CPU utilization
and queue length) load balancing will be required it will
return true else it will return false. This function also updates
two lists:
HeavilyLoaded_list and LightlyLoaded_list: Threshold
heavy load and threshold light load is defined initially which
depends on the traffic of application on the Grid.

Function: LoadBalancing_start
Return Type: Boolean
Start:
If (Standard Deviation of Load of nodes <
SD_Threshold)
If (Load of any node is greater then average Load value
of nodes)
HeavilyLoaded_list= HeavilyLoaded_list + l (new
selected node);
End if
Else (Load of any node is greater then threshold heavy
load value)
HeavilyLoaded_list= HeavilyLoaded_list + l (new
selected node);
Else if (Load of any node is less then threshold light load
value)
End
 Outline of Load Balancing_start Function

Here actual load distribution is performed at a centralized
controller or manager node. The central controller polls each
workstation and collects state information consisting of a
node’s current load as well as the number of jobs in the
node’s queue. The polling is done on basis of occurrence of
some defined activity. It is not done periodically. Periodic
checking approach is used in Condor. In case of periodic
approach Load Balancer collects load sample periodically
which is not required and infect creates an overhead also.

In the proposed algorithm information is collected
only if there is a change in configuration of rid. This
information is used to perform load balancing. Above is the
flow diagram of algorithm. First of all it initializes different
parameters. Whenever any of four activities which are
required to start information policy of load balancing occurs,
it starts collecting load balancing information. Once
information has been gathered then it is decided that load

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

balancing is required or not. For this purpose application
uses CPU utilization and queue length parameters.
With help of these parameters we decide which resource is
heavily loaded and which resource is lightly loaded. After
selection of resource the application selects job out of n-jobs
running on that resource. This selection is based upon on
CPU consumption of different jobs. Least CPU consumed
job will be selected for migration. When job is selected,
application checks for available lightly loaded resource. If
lightly loaded resource is available then migrate selected job
from heavily loaded resource to lightly loaded resource. If
no lightly loaded resource is available then add selected job
to pending job list. This job will be executed later when
some lightly loaded resource will be available. Finally all the
value will be updated in database.

Figure 4: Flow Chart of Algorithm

VIII. IMPLEMENTATION DETAILS
A Load Balancing Module has been developed

which executes in simulated grid environment. This
application has been developed using J2EE and MySQL
database server.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 6
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Figure 5: Overall System Architecture

Above is the overall architecture of the application
developed. Information about all resources is stored in
resource database. Resources are generated by GridSim.
Resource discovery process use resource database to
discover all possible match to the resource query. Next
process is resource selection and allocation. This process is
also done by GridSim. Once resource allocation is done then
Load Balancing process come in existence. Execution of
Load Balancing depends on condition specified.

IX. EXPERIMENTAL RESULTS

Screen Shot.1: Image of Load Balancing (1) Page
Above is the image of Load Balancing (1) page.

This window appears after Load Balancing has been
performed. In normal scenario if sufficient lightly loaded
resources are available then after load balancing no heavily
loaded resource will be available. Job from all heavily
loaded resource will be migrated to lightly loaded resource.
This page also gives information about which Job ID is
migrated from which resource to which resource.

Screen Shot.2: Image of Load Balancing (2) Page
Above is the image of Load Balancing (2) page.

This image shows after Load Balancing has been performed
but job is not migrated. This is one particular case when
heavily loaded resource has been finalize and job which
should be migrated has been finalize but there is no
corresponding lightly loaded resource is available. In this
case job is put in to Pending Job list. When ever any lightly

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 7
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

loaded resource will be available this job will be migrated to
the lightly loaded resource.

X. CONCLUSION
Grid application performance remains a challenge

in dynamic grid environment. Resources can be submitted to
Grid and can be withdrawn from Grid at any moment. This
characteristic of Grid makes Load Balancing one of the
critical features of Grid infrastructure. Here we have focused
on Load Balancing and tried to present the impacts of Load
Balancing on grid application performance and finally
proposed a efficient Load Balancing algorithm for Grid
environment.

In this work we analyzed existing Load Balancing
algorithm and proposed an enhanced algorithm which more
efficiently implements three out of five policies
implemented in existing Load Balancing algorithm. These
three policies are: Information Policy, Triggering Policy and
Selection Policy. Proposed algorithm is executed in
simulated Grid environment.

REFERENCES
[1] Krishnaram Kenthapadi, Stanford University ,
kngk@cs.stanford.edu and Gurmeet Singh Mankuy , Google
Inc., manku@google.com,Decentralized Algorithms using
both Local and Random Probes for P2P Load Balancing.
 [2] Ian Foster , Carl Kesselman Steven Tuecke , The
Anatomy of the Grid Enabling Scalable Virtual
Organizations , Intl J. Supercomputer Applications, 2001.
[3] Francois Grey, Matti Heikkurinen, Rosy Mondardini,
Robindra Prabhu, “Brief History of Grid”,
http://Gridcafe.web.cern.ch/Gridcafe/Gridhistory/history.htm
l.
[4]Marcin Bienkowski, Miroslaw Korzeniowski, Friedhelm
Meyer aud der Heide,Dynamic Load Balancing in
Distributed Hash Tables.
[5]Giuseppe Di Fatta and Michael R. Berthold, Department
of Computer and Information Science, University of
Konstanz, Decentralized Load Balancing for Highly
Irregular Search Problems.
[6]Anthony Sulistio, Chee Shin Yeo, and Rajkumar Buyya,
Visual Modeler for Grid Modeling and Simulation
(GridSim) Toolkit.

http://www.ijser.org/
mailto:kngk@cs.stanford.edu
mailto:manku@google.com
http://Gridcafe.web.cern.ch/Gridcafe/Gridhistory/history.htm

